Still another triangle-free infinite-chromatic graph

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Still another triangle-free infinite-chromatic graph

We give a new example of a triangle-free cc-chromatic graph: the vertices of G form a oox oo matrix, V(G) = [vi,i], i, j = 1, 2, ... The vertex vi,i is connected with every vertex of the ( i + j)th column. G is triangle-free: if A has the smallest column-index among {A, B, C}c V(G) and AB, ACEE(G), then B, Care in the same column so BC¢E(G). G is infinite-chromatic: ~ ~ {1, 2, ... } denotes the...

متن کامل

Another Infinite Sequence of Dense Triangle-Free Graphs

The core is the unique homorphically minimal subgraph of a graph A triangle free graph with minimum degree n is called dense It was observed by many authors that dense triangle free graphs share strong structural properties and that the natural way to describe the structure of these graphs is in terms of graph homomorphisms One in nite sequence of cores of dense maximal triangle free graphs was...

متن کامل

Infinite-chromatic Graph of Gyarfas

Gyarfas has recently constructed an elegant new example of a trianglefree infinite graph G with infinite chromatic number. We analyze its structure by studying the properties of a nested family of subgraphs G whose union is G.

متن کامل

On minimal triangle-free 6-chromatic graphs

A graph with chromatic number k is called k-chromatic. Using computational methods, we show that the smallest triangle-free 6-chromatic graphs have at least 32 and at most 40 vertices. We also determine the complete set of all triangle-free 5-chromatic graphs up to 23 vertices and all triangle-free 5-chromatic graphs on 24 vertices with maximum degree at most 7. This implies that Reed’s conject...

متن کامل

The fractional chromatic number of triangle-free subcubic graphs

Heckman and Thomas conjectured that the fractional chromatic number of any triangle-free subcubic graph is at most 14/5. Improving on estimates of Hatami and Zhu and of Lu and Peng, we prove that the fractional chromatic number of any triangle-free subcubic graph is at most 32/11 ≈ 2.909.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1980

ISSN: 0012-365X

DOI: 10.1016/0012-365x(80)90120-x